Digitally Controlled Potentiometer (XDCP ${ }^{\text {™ }}$)

FEATURES

- Solid-state potentiometer
- 3-wire serial interface
- 100 wiper tap points
-Wiper position stored in nonvolatile memory and recalled on power-up
- 99 resistive elements
-Temperature compensated
-End to end resistance, $\pm 20 \%$
-Terminal voltages, $\pm 5 \mathrm{~V}$
- Low power CMOS
$-V_{c c}=5 \mathrm{~V}$
-Active current, 3mA max.
-Standby current, 750 A A max.
- High reliability
-Endurance, 100,000 data changes per bit
-Register data retention, 100 years
- X9C102 = 1k Ω
- $\mathrm{X9C103}=10 \mathrm{k} \Omega$
- $\mathrm{X} 9 \mathrm{C} 503=50 \mathrm{k} \Omega$
- X9C104 = 100k Ω
- Packages
—8 Ld SOIC and 8 Ld PDIP
- Pb-free plus anneal available (RoHS compliant)

DESCRIPTION

The X9Cxxx are Intersil digitally controlled (XDCP) potentiometers. The device consists of a resistor array, wiper switches, a control section, and nonvolatile memory. The wiper position is controlled by a three-wire interface.

The potentiometer is implemented by a resistor array composed of 99 resistive elements and a wiper switching network. Between each element and at either end are tap points accessible to the wiper terminal. The position of the wiper element is controlled by the $\overline{\mathrm{CS}}$, $\mathrm{U} / \overline{\mathrm{D}}$, and $\overline{\mathrm{INC}}$ inputs. The position of the wiper can be stored in nonvolatile memory and then be recalled upon a subsequent power-up operation.

The device can be used as a three-terminal potentiometer or as a two-terminal variable resistor in a wide variety of applications including:

- control
- parameter adjustments
- signal processing

BLOCK DIAGRAM

PIN CONFIGURATION

ORDERING INFORMATION

PART NUMBER	PART MARKING	$\mathrm{R}_{\text {TOTAL }}$ (k Ω)	TEMPERATURE RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. DWG. \#
X9C102P	X9C102P	1	0 to 70	8 Ld PDIP	MDP0031
X9C102PZ (Note)	X9C102P Z		0 to 70	8 Ld PDIP (Pb-free)	MDP0031
X9C102PI	X9C102P I		-40 to 85	8 Ld PDIP	MDP0031
X9C102PIZ (Note)	X9C102P ZI		-40 to 85	8 Ld PDIP (Pb-free)	MDP0031
X9C102S*, **	X9C102S		0 to 70	8 Ld SOIC	MDP0027
X9C102SZ* (Note)	X9C102S Z		0 to 70	8 Ld SOIC (Pb-free)	MDP0027
X9C102SI*, **	X9C102S I		-40 to 85	8 Ld SOIC	MDP0027
X9C102SIZ*, ** (Note)	X9C102S ZI		-40 to 85	8 Ld SOIC (Pb-free)	MDP0027
X9C103P	X9C103P	10	0 to 70	8 Ld PDIP	MDP0031
X9C103PZ (Note)	X9C103P Z		0 to 70	8 Ld PDIP (Pb-free)	MDP0031
X9C103PI	X9C103P I		-40 to 85	8 Ld PDIP	MDP0031
X9C103PIZ (Note)	X9C103P ZI		-40 to 85	8 Ld PDIP (Pb-free)	MDP0031
X9C103S*, **	X9C103S		0 to 70	8 Ld SOIC	MDP0027
X9C103SZ*, ** (Note)	X9C103S Z		0 to 70	8 Ld SOIC (Pb-free)	MDP0027
X9C103SI*, **	X9C103S I		-40 to 85	8 Ld SOIC	MDP0027
X9C103SIZ*, ** (Note)	X9C103S ZI		-40 to 85	8 Ld SOIC (Pb-free)	MDP0027
X9C503P	X9C503P	50	0 to 70	8 Ld PDIP	MDP0031
X9C503PZ (Note)	X9C503P Z		0 to 70	8 Ld PDIP (Pb-free)	MDP0031
X9C503PI	X9C503P I		-40 to 85	8 Ld PDIP	MDP0031
X9C503PIZ (Note)	X9C503P ZI		-40 to 85	8 Ld PDIP (Pb-free)	MDP0031
X9C503S*	X9C503S		0 to 70	8 Ld SOIC	MDP0027
X9C503SZ* (Note)	X9C503S Z		0 to 70	8 Ld SOIC (Pb-free)	MDP0027
X9C503SI*,**	X9C503S I		-40 to 85	8 Ld SOIC	MDP0027
X9C503SIZ*, ** (Note)	X9C503S ZI		-40 to 85	8 Ld SOIC (Pb-free)	MDP0027
X9C104P	X9C104P	100	0 to 70	8 Ld PDIP	MDP0031
X9C104PI	X9C104P I		-40 to 85	8 Ld PDIP	MDP0031
X9C104PIZ (Note)	X9C104P ZI		-40 to 85	8 Ld PDIP (Pb-free)	MDP0031
X9C104S*, **	X9C104S		0 to 70	8 Ld SOIC	MDP0027
X9C104SZ*, ** (Note)	X9C104S Z		0 to 70	8 Ld SOIC (Pb-free)	MDP0027
X9C104SI*, **	X9C104S I		-40 to 85	8 Ld SOIC	MDP0027
X9C104SIZ*, ** (Note)	X9C104S ZI		-40 to 85	8 Ld SOIC (Pb-free)	MDP0027

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
*Add "T1" suffix for tape and reel.
**Add "T2" suffix for tape and reel.

PIN DESCRIPTIONS

Pin	Symbol	Brief Description
1	$\overline{\mathrm{INC}}$	Increment . The $\overline{\mathrm{INC}}$ input is negative-edge triggered. Toggling $\overline{\mathrm{INC}}$ will move the wiper and either increment or decrement the counter in the direction indicated by the logic level on the U/D input.
2	U/ $\overline{\mathrm{D}}$	Up/Down. The U/D input controls the direction of the wiper movement and whether the counter is incremented or decremented.
3	$\mathrm{R}_{\mathrm{H}} / \mathrm{V}_{\mathrm{H}}$	$\mathbf{R}_{\mathrm{H}} / \mathbf{V}_{\mathrm{H}} \cdot$ The high $\left(\mathrm{V}_{\mathrm{H}} / \mathrm{R}_{\mathrm{H}}\right)$ terminals of the $\mathrm{X} 9 \mathrm{C} 102 / 103 / 104 / 503$ are equivalent to the fixed terminals of a mechanical potentiometer. The minimum voltage is -5 V and the maximum is +5 V . The terminology of V_{H} / R_{H} and V_{L} / R_{L} references the relative position of the terminal in relation to wiper movement direction selected by the U / \bar{D} input and not the voltage potential on the terminal.
4	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {ss }}$
5	$\mathrm{V}_{\mathrm{W}} / \mathrm{R}_{\mathrm{W}}$	$\mathrm{V}_{\mathrm{W}} / \mathrm{R}_{\mathrm{W}} \cdot \mathrm{V}_{\mathrm{W}} / \mathrm{R}_{\mathrm{W}}$ is the wiper terminal, and is equivalent to the movable terminal of a mechanical potentiometer. The position of the wiper within the array is determined by the control inputs. The wiper terminal series resistance is typically 40Ω.
6	$\mathrm{R}_{\mathrm{L}} / \mathrm{V}_{\mathrm{L}}$	$\mathbf{R}_{\mathrm{L}} / \mathrm{V}_{\mathrm{L}}$. The low ($\mathrm{V}_{\mathrm{L}} / \mathrm{R}_{\mathrm{h}}$) terminals of the X9C102/103/104/503 are equivalent to the fixed terminals of a mechanical potentiometer. The minimum voltage is -5 V and the maximum is +5 V . The terminology of V_{H} / R_{H} and V_{L} / R_{L} references the relative position of the terminal in relation to wiper movement direction selected by the $U / \overline{\mathrm{D}}$ input and not the voltage potential on the terminal.
7	$\overline{\text { CS }}$	$\overline{\mathbf{C S}}$. The device is selected when the $\overline{\mathrm{CS}}$ input is LOW. The current counter value is stored in nonvolatile memory when $\overline{\mathrm{CS}}$ is returned HIGH while the $\overline{\mathrm{NC}}$ input is also HIGH. After the store operation is complete the X9C102/103/104/503 device will be placed in the low power standby mode until the device is selected once again.
8	V_{cc}	$\mathrm{V}_{\text {cc }}$

ABSOLUTE MAXIMUM RATINGS

COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device (at these or any other conditions above those listed in the operational sections of this specification) is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Temperature	Min.	Max.
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$

Supply Voltage (V $\mathbf{c c}$)	Limits
$\mathrm{X} 9 \mathrm{C} 102 / 103 / 104 / 503$	$5 \mathrm{~V} \pm 10 \%$

POTENTIOMETER CHARACTERISTICS (Over recommended operating conditions unless otherwise stated.)

Symbol	Parameter	Limits			Unit	Test Conditions/Notes
		Min.	Typ.	Max.		
$\mathrm{R}_{\text {TOTAL }}$	End to end resistance variation	-20		+20	\%	
$\mathrm{V}_{\mathrm{VH} / \mathrm{RH}}$	V_{H} terminal voltage	-5		+5	V	
$\mathrm{V}_{\mathrm{VL/RL}}$	V_{L} terminal voltage	-5		+5	V	
I_{W}	Wiper current	-4.4		4.4	mA	
R_{W}	Wiper resistance		40	100	Ω	Wiper Current $= \pm 1 \mathrm{~mA}$
	Noise ${ }^{(5)}$		-120		dBV	Ref. 1kHz
	Resolution		1		\%	
	Absolute linearity ${ }^{(1)}$	-1		+1	MI ${ }^{(3)}$	$\mathrm{V}_{\mathrm{W} \text { (n)(actual) }}-\mathrm{V}_{\mathrm{W}(\mathrm{n}) \text { (expected) }}$
	Relative linearity ${ }^{(2)}$	-0.2		+0.2	MI ${ }^{(3)}$	$\mathrm{V}_{\mathrm{W}(\mathrm{n}+1) \text { (actual) }}-\left[\mathrm{V}_{\mathrm{W}(\mathrm{n})+\mathrm{MI}}\right]$
	RTOTAL temperature coefficient		$\pm 300{ }^{(5)}$		ppm $/{ }^{\circ} \mathrm{C}$	X9C103/503/104
	RTOTAL temperature coefficient		$\pm 600{ }^{(5)}$		ppm $/{ }^{\circ} \mathrm{C}$	X9C102
	Ratiometric temperature coefficient		± 20		ppm $/{ }^{\circ} \mathrm{C}$	
$\mathrm{C}_{\mathrm{H}} / \mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{W}}$ (5)	Potentiometer capacitances		10/10/25		pF	See Circuit \#3, Macro Model

[^0]D.C. OPERATING CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Limits			Unit	Test Conditions
		Min.	Typ. ${ }^{(4)}$	Max.		
I_{CC}	$\mathrm{V}_{C C}$ active current		1	3	mA	$\begin{aligned} & \overline{\overline{\mathrm{CS}}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{U} / \overline{\mathrm{D}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \text { and } \\ & \overline{\mathrm{INC}}=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V} @ \text { max. } \mathrm{t}_{\mathrm{CYC}} \end{aligned}$
$\mathrm{I}_{\text {SB }}$	Standby supply current		200	750	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \mathrm{U} / \overline{\mathrm{D}} \text { and } \overline{\mathrm{INC}}=\mathrm{V}_{\mathrm{SS}} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \end{aligned}$
ILI^{\prime}	$\overline{\mathrm{CS}}, \overline{\mathrm{INC}}, \mathrm{U} / \overline{\mathrm{D}}$ input leakage current			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$ to V_{CC}
V_{IH}	$\overline{\mathrm{CS}}, \mathrm{INC}, \mathrm{U} / \overline{\mathrm{D}}$ input HIGH voltage	2			V	
V_{IL}	$\overline{\mathrm{CS}}, \overline{\mathrm{INC}}, \mathrm{U} / \overline{\mathrm{D}}$ input LOW voltage			0.8	V	
$\mathrm{CIN}^{(5)}$	$\overline{\mathrm{CS}}, \overline{\mathrm{INC}}, \mathrm{U} / \overline{\mathrm{D}}$ input capacitance		10		pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {SS }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

ENDURANCE AND DATA RETENTION

Parameter	Min.	Unit
Minimum endurance	100,000	Data changes per bit per register
Data retention	100	years

Test Circuit \#1

Test Circuit \#2

Test Circuit \#3

A.C. CONDITIONS OF TEST

Input pulse levels	OV to 3V
Input rise and fall times	10 ns
Input reference levels	1.5 V

A.C. OPERATING CHARACTERISTICS (Over recommended operating conditions unless otherwise specified)

Symbol	Parameter	Limits			Unit
		Min.	Typ. ${ }^{(6)}$	Max.	
t_{Cl}	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{INC}}$ setup	100			ns
t_{ID}	$\overline{\text { INC }}$ HIGH to U/ $\overline{\mathrm{D}}$ change	100			ns
t_{D}	U/ $\overline{\mathrm{D}}$ to $\overline{\mathrm{NC}}$ setup	2.9			$\mu \mathrm{s}$
t_{LL}	$\overline{\text { INC LOW period }}$	1			$\mu \mathrm{s}$
t_{H}	$\overline{\text { INC HIGH period }}$	1			$\mu \mathrm{s}$
$\mathrm{t}_{1 \mathrm{C}}$	$\overline{\mathrm{INC}}$ inactive to $\overline{\mathrm{CS}}$ inactive	1			$\mu \mathrm{s}$
$\mathrm{t}_{\text {CPH }}$	$\overline{\mathrm{CS}}$ deselect time (STORE)	20			ms
$\mathrm{t}_{\mathrm{CPH}}$	$\overline{\mathrm{CS}}$ deselect time (NO STORE)	100			ns
$\mathrm{t}_{\text {W }}{ }^{(5)}$	$\overline{\mathrm{INC}}$ to $\mathrm{V}_{\text {W/RW }}$ change		100		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{CYC}}$	$\overline{\text { INC cycle time }}$	2			$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{R},} \mathrm{t}^{(5)}$	$\overline{\mathrm{INC}}$ input rise and fall time			500	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{P}}{ }^{(5)}$	Power-up to wiper stable		500		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{R}} \mathrm{V}_{C C}{ }^{(5)}$	$\mathrm{V}_{\text {CC }}$ power-up rate	0.2		50	V / ms

POWER-UP AND DOWN REQUIREMENTS

At all times, voltages on the potentiometer pins must be less than $\pm \mathrm{V}_{\mathrm{CC}}$. The recall of the wiper position from nonvolatile memory is not in effect until the V_{CC} supply reaches its final value. The V_{CC} ramp rate spec is always in effect.
A.C. TIMING

Notes: (6) Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(7) This parameter is periodically sampled and not 100% tested.
(8) Ml in the $\mathrm{A} . C$. timing diagram refers to the minimum incremental change in the V_{W} output due to a change in the wiper position.

DETAILED PIN DESCRIPTIONS

$\mathbf{R}_{\mathbf{H}} / \mathbf{V}_{\mathbf{H}}$ and $\mathbf{R}_{\mathrm{L}} / V_{\mathrm{L}}$

The high ($\mathrm{V}_{\mathrm{H}} / \mathrm{R}_{\mathrm{H}}$) and low ($\mathrm{V}_{\mathrm{L}} / \mathrm{R}_{\mathrm{L}}$) terminals of the X9C102/103/104/503 are equivalent to the fixed terminals of a mechanical potentiometer. The minimum voltage is -5 V and the maximum is +5 V . The terminology of V_{H} / R_{H} and V_{L} / R_{L} references the relative position of the terminal in relation to wiper movement direction selected by the U / \bar{D} input and not the voltage potential on the terminal.
$\mathbf{R}_{\mathrm{w}} / \mathrm{V}_{\mathrm{w}}$
V_{W} / R_{W} is the wiper terminal, and is equivalent to the movable terminal of a mechanical potentiometer. The position of the wiper within the array is determined by the control inputs. The wiper terminal series resistance is typically 40Ω.

Up/Down (U/D)

The U/D input controls the direction of the wiper movement and whether the counter is incremented or decremented.

Increment (INC)

The INC input is negative-edge triggered. Toggling INC will move the wiper and either increment or decrement the counter in the direction indicated by the logic level on the $\mathrm{U} / \overline{\mathrm{D}}$ input.

Chip Select ($\overline{\mathbf{C S}}$)

The device is selected when the $\overline{C S}$ input is LOW. The current counter value is stored in nonvolatile memory when $\overline{\mathrm{CS}}$ is returned HIGH while the $\overline{\mathrm{INC}}$ input is also HIGH. After the store operation is complete the X9C102/103/104/503 device will be placed in the low power standby mode until the device is selected once again.

PIN CONFIGURATION

PIN NAMES

Symbol	Description
$\mathrm{V}_{\mathrm{H}} / \mathrm{R}_{\mathrm{H}}$	High Terminal
$\mathrm{V}_{\mathrm{W}} / \mathrm{R}_{\mathrm{W}}$	Wiper Terminal
$\mathrm{V}_{\mathrm{L}} / \mathrm{R}_{\mathrm{L}}$	Low Terminal
V_{SS}	Ground
V_{CC}	Supply Voltage
$\mathrm{U} / \overline{\mathrm{D}}$	Up/Down Control Input
$\overline{\mathrm{NC}}$	Increment Control Input
$\overline{\mathrm{CS}}$	Chip Select Control Input
NC	No Connection

PRINCIPLES OF OPERATION

There are three sections of the X9Cxxx: the input control, counter and decode section; the nonvolatile memory; and the resistor array. The input control section operates just like an up/down counter. The output of this counter is decoded to turn on a single electronic switch connecting a point on the resistor array to the wiper output. Under the proper conditions the contents of the counter can be stored in nonvolatile memory and retained for future use. The resistor array is comprised of 99 individual resistors connected in series. At either end of the array and between each resistor is an electronic switch that transfers the potential at that point to the wiper.

The wiper, when at either fixed terminal, acts like its mechanical equivalent and does not move beyond the last position. That is, the counter does not wrap around when clocked to either extreme.

The electronic switches on the device operate in a "make before break" mode when the wiper changes tap positions. If the wiper is moved several positions, multiple taps are connected to the wiper for t_{IW} ($\overline{\mathrm{INC}}$ to $\mathrm{V}_{\mathrm{W}} / \mathrm{R}_{\mathrm{W}}$ change). The $\mathrm{R}_{\text {TOTAL }}$ value for the device can temporarily be reduced by a significant amount if the wiper is moved several positions.

When the device is powered-down, the last wiper position stored will be maintained in the nonvolatile memory. When power is restored, the contents of the memory are recalled and the wiper is set to the value last stored.

INSTRUCTIONS AND PROGRAMMING

The $\overline{\mathrm{NC}}, \mathrm{U} / \overline{\mathrm{D}}$ and $\overline{\mathrm{CS}}$ inputs control the movement of the wiper along the resistor array. With $\overline{\mathrm{CS}}$ set LOW the device is selected and enabled to respond to the U/D and INC inputs. HIGH to LOW transitions on INC will increment or decrement (depending on the state of the U / \bar{D} input) a seven-bit counter. The output of this counter is decoded to select one of one-hundred wiper positions along the resistive array.

The value of the counter is stored in nonvolatile memory whenever $\overline{\mathrm{CS}}$ transitions HIGH while the $\overline{\mathrm{INC}}$ input is also HIGH.

The system may select the X9Cxxx, move the wiper, and deselect the device without having to store the latest wiper position in nonvolatile memory. After the wiper movement is performed as described above and once the new position is reached, the system must keep INC LOW while taking $\overline{\mathrm{CS}}$ HIGH. The new wiper position will be maintained until changed by the system or until a power-down/up cycle recalled the previously stored data.

This procedure allows the system to always power-up to a preset value stored in nonvolatile memory; then during system operation minor adjustments could be made. The adjustments might be based on user preference: system parameter changes due to temperature drift, etc...
The state of U / \bar{D} may be changed while $\overline{C S}$ remains LOW. This allows the host system to enable the device and then move the wiper up and down until the proper trim is attained.

MODE SELECTION

$\overline{\mathbf{C S}}$	$\overline{\text { INC }}$	U/ $\overline{\mathbf{D}}$	Mode
L	1	H	Wiper Up
L	1	L	Wiper Down
\rightarrow	H	X	Store Wiper Position
H	X	X	Standby Current
\checkmark	L	X	No Store, Return to Standby
1	L	H	Wiper Up (not recommended)
1	L	L	Wiper Down (not recommended)

SYMBOL TABLE

WAVEFORM	INPUTS Must be steady	OUTPUTS Will be steady		
	May change from Low to High	Will change from Low to High		
May change				
fom High to				
Low			\quad	Will change
:---				
from High to				
Low				

PERFORMANCE CHARACTERISTICS

Contact the factory for more information.

APPLICATIONS INFORMATION

Electronic digitally controlled (XCDP) potentiometers provide three powerful application advantages; (1) the variability and reliability of a solid-state potentiometer, (2) the flexibility of computer-based digital controls, and (3) the retentivity of nonvolatile memory used for the storage of multiple potentiometer settings or data.

Basic Configurations of Electronic Potentiometers

Three terminal potentiometer; variable voltage divider

Two terminal variable resistor; variable current

Basic Circuits

Buffered Reference Voltage

$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{W}} / \mathrm{R}_{\mathrm{W}}$

Cascading Techniques

Offset Voltage Adjustment

Noninverting Amplifier

$$
V_{O}=\left(1+R_{2} / R_{1}\right) V_{S}
$$

Small Outline Package Family (SO)

DETAIL X
MDP0027
SMALL OUTLINE PACKAGE FAMILY (SO)

SYMBOL	SO-8	SO-14	SO16 $(\mathbf{0 . 1 5 0 ")}$	SO16 (0.300") $(\mathbf{S O L - 1 6)}$	SO20 $(\mathbf{S O L - 2 0})$	SO24 $(\mathbf{S O L - 2 4)}$	SO28 $(\mathbf{S O L - 2 8})$	TOLERANCE	NOTES
A	0.068	0.068	0.068	0.104	0.104	0.104	0.104	MAX	-
A1	0.006	0.006	0.006	0.007	0.007	0.007	0.007	± 0.003	-
A2	0.057	0.057	0.057	0.092	0.092	0.092	0.092	± 0.002	-
b	0.017	0.017	0.017	0.017	0.017	0.017	0.017	± 0.003	-
c	0.009	0.009	0.009	0.011	0.011	0.011	0.011	± 0.001	-
D	0.193	0.341	0.390	0.406	0.504	0.606	0.704	± 0.004	1,3
E	0.236	0.236	0.236	0.406	0.406	0.406	0.406	± 0.008	-
E1	0.154	0.154	0.154	0.295	0.295	0.295	0.295	± 0.004	2,3
e	0.050	0.050	0.050	0.050	0.050	0.050	0.050	Basic	-
L	0.025	0.025	0.025	0.030	0.030	0.030	0.030	± 0.009	-
L1	0.041	0.041	0.041	0.056	0.056	0.056	0.056	Basic	-
h	0.013	0.013	0.013	0.020	0.020	0.020	0.020	Reference	-
N	8	14	16	16	20	24	28	Reference	-

NOTES:

1. Plastic or metal protrusions of $0.006^{\prime \prime}$ maximum per side are not included.
2. Plastic interlead protrusions of $0.010^{\prime \prime}$ maximum per side are not included.
3. Dimensions " D " and " $E 1$ " are measured at Datum Plane " H ".
4. Dimensioning and tolerancing per ASME Y14.5M-1994

Plastic Dual-In-Line Packages (PDIP)

MDP0031

PLASTIC DUAL-IN-LINE PACKAGE

SYMBOL	PDIP8	PDIP14	PDIP16	PDIP18	PDIP20	TOLERANCE	NOTES
A	0.210	0.210	0.210	0.210	0.210	MAX	
A1	0.015	0.015	0.015	0.015	0.015	MIN	
A2	0.130	0.130	0.130	0.130	0.130	± 0.005	
b	0.018	0.018	0.018	0.018	0.018	± 0.002	
b2	0.060	0.060	0.060	0.060	0.060	$+0.010 /-0.015$	
c	0.010	0.010	0.010	0.010	0.010	$+0.004 /-0.002$	
D	0.375	0.750	0.750	0.890	1.020	± 0.010	1
E	0.310	0.310	0.310	0.310	0.310	$+0.015 /-0.010$	± 0.005
E1	0.250	0.250	0.250	0.250	0.250	Basic	
e	0.100	0.100	0.100	0.100	0.100	Basic	
eA	0.300	0.300	0.300	0.300	0.300	± 0.025	
eB	0.345	0.345	0.345	0.345	0.345	± 0.010	
L	0.125	0.125	0.125	0.125	0.125	Reference	
N	8	14	16	18	20	Ren	

Rev. B 2/99
NOTES:

1. Plastic or metal protrusions of $0.010^{\prime \prime}$ maximum per side are not included.
2. Plastic interlead protrusions of $0.010^{\prime \prime}$ maximum per side are not included.
3. Dimensions E and eA are measured with the leads constrained perpendicular to the seating plane.
4. Dimension eB is measured with the lead tips unconstrained.
5. 8 and 16 lead packages have half end-leads as shown.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^1]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Notes: (1) Absolute linearity is utilized to determine actual wiper voltage versus expected voltage $=\left[\mathrm{V}_{\mathrm{W}(\mathrm{n})(\text { actual })}-\mathrm{V}_{\mathrm{W}(\mathrm{n})(\text { expected })}\right]= \pm 1 \mathrm{MI}$ Maximum
 (2) Relative linearity is a measure of the error in step size between taps $=\mathrm{V}_{\mathrm{W}(\mathrm{n}+1)}-\left[\mathrm{V}_{\mathrm{W}(\mathrm{n})+\mathrm{MI}}\right]=+0.2 \mathrm{MI}$.
 (3) $1 \mathrm{MI}=$ Minimum Increment $=\mathrm{R}_{\mathrm{TOT}} / 99$
 (4) Typical values are for $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and nominal supply voltage.
 (5) This parameter is not 100% tested.

[^1]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

